Die vier Erscheinungsformen (Modi) einer Zwölftonreihe



Arnold Schönberg kennt von einer Zwölftonreihe vier Erscheinungsformen (Modi):

a) Grundgestalt
b) Umkehrung (Spiegel)
c) Krebs
d) Krebsumkehrung (Umkehrungskrebs, Spiegelkrebs)

Jede der vier Erscheinungsformen läßt sich elfmal transponieren. Somit gibt es von einer Zwölftonreihe 48 Modi, die sich etwa Schönberg in einer Reihentabelle notierte, um alles Reihenmaterial als Arbeitspapier beim Komponieren bei der Hand zu haben.

Bei der Zwölftonreihe
                           
                           
  d f ges b es a g e h cis c as
1 2 3 4 5 6 7 8 9 10 11 12



würden die vier Modi folgendermaßen aussehen:
 
Grundgestalt:






d





f






ges





b










es



a







g








e



h





cis







c









as



 
  + 11 Transpositionen  
Umkehrung
(Spiegel):

d








h







ais








fis



cis










g






a





c










f








es






e




gis


 
  + 11 Transpositionen  
Krebs:



as





c






cis







h










e





g





a









es



b









ges







f








d
 
  + 11 Transpositionen  
Krebsumkehrung
(Umkehrungskrebs,
Spiegelkrebs):




gis








e







es






f



c








a








g




cis










fis




ais






h





d





 
  + 11 Transpositionen  





vorige Seite - nächste Seite


Weiterführende Informationen in Wort und Ton siehe:

Links
Linkregister (öfters gesuchte Links)

siehe auch:
Skriptumblatt "Die 48 Modi einer Zwölftonreihe"

siehe auch:
Klangreihenmusik (Gesamtüberblick)

siehe auch: Behandlung Schönbergs und Hauers im Musik-Kolleg Online

zurück zum Stichwortverzeichnis

zurück zum Stichwort "Zwölftonreihe"

zurück zur Startseite


Warning: PHP Startup: Unable to load dynamic library 'imagick.so' (tried: /usr/lib/php56/extensions/imagick.so (/usr/lib/php56/extensions/imagick.so: undefined symbol: _zval_ptr_dtor), /usr/lib/php56/extensions/imagick.so.so (/usr/lib/php56/extensions/imagick.so.so: cannot open shared object file: No such file or directory)) in Unknown on line 0